An Efficient Algorithm for Mining Maximal Frequent Item Sets

نویسندگان

  • A. M. J. Md. Zubair Rahman
  • P. Balasubramanie
چکیده

Problem Statement: In today’s life, the mining of frequent patterns is a basic problem in data mining applications. The algorithms which are used to generate these frequent patterns must perform efficiently. The objective was to propose an effective algorithm which generates frequent patterns in less time. Approach: We proposed an algorithm which was based on hashing technique and combines a vertical tidset representation of the database with effective pruning mechanisms. It removes all the non-maximal frequent item-sets to get exact set of MFI directly. It worked efficiently when the number of item-sets and tid-sets is more. Results: The performance of our algorithm had been compared with recently developed MAFIA algorithm and the results show how our algorithm gives better performance. Conclusions: Hence, the proposed algorithm performs effectively and generates frequent patterns faster.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Indexed Enhancement on GenMax Algorithm for Fast and Less Memory Utilized Pruning of MFI and CFI

The essential problem in many data mining applications is mining frequent item sets such as the discovery of association rules, patterns, and many other important discovery tasks. Fast and less memory utilization for solving the problems of frequent item sets are highly required in transactional databases. Methods for mining frequent item sets have been implemented using a prefix-tree structure...

متن کامل

Max-Miner Algorithm Using Knowledge Discovery Process in Data Mining

Discovering frequent item sets is an important key problem in data mining applications, such as the discovery of association rules, strong rules, episodes, and minimal keys. Typical algorithms for solving this problem operate in a bottom-up, breadth-first search direction. The computation starts from frequent itemsets (the minimum length frequent itemsets) and continues until all maximal (lengt...

متن کامل

A Hybrid GeneticMax Algorithm for Improving the Traditional Genetic Based Approach for Mining Maximal Frequent Item Sets

Mining Frequent item sets is one of the most useful data mining methods which discovers important relationships among attributes of data sets. Initially it was developed for market basket analysis, but these days it is used to solve any task where discovering hidden relationships among different attributes is required. Mining frequent item sets plays a vital role for generating association rule...

متن کامل

LCM: An Efficient Algorithm for Enumerating Frequent Closed Item Sets

In this paper, we propose three algorithms LCMfreq, LCM, and LCMmax for mining all frequent sets, frequent closed item sets, and maximal frequent sets, respectively, from transaction databases. The main theoretical contribution is that we construct treeshaped transversal routes composed of only frequent closed item sets, which is induced by a parent-child relationship defined on frequent closed...

متن کامل

A Novel Approach for finding Frequent Item Sets with Hybrid Strategies

Frequent item sets mining plays an important role in association rules mining. Over the years, a variety of algorithms for finding frequent item sets in very large transaction databases have been developed. Therefore, a number of methods have been proposed recently to discover approximate frequent item sets. This paper proposes an efficient SMine (Sorted Mine) Algorithm for finding frequent ite...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008